

Part I: Reading the Graph

- remember, the solubility curve/ graph has three variables on it:
 - on the x axis = temperature
 - on the y axis = grams of solute that can be dissolved
 - also on the y axis = grams of solvent (in this case, 100g water) that the solute is dissolving in
 - the grams of solvent is always held constant on the graph (you can't manipulate 3 variables at once)

- to read the graph:
- look for the given info first,
- read up or over until you hit the line (for your compound),
- go to the other axis for the information you are looking for.

Ex1: How many grams of KNO₃ will dissolve in 100g H₂O at 50°C?

__79__g

Ex2: How many grams of KCl will dissolve in 100g H₂O at 82°C?

52 g

Temperature (°C)

Part II: Calculating from the Graph

- sometimes a question can be asked that cannot be answered solely from reading the graph. But information can be obtained from the graph to help answer the question.
- Ex5: Dissolving 25 g of NaCl in 100g H₂O at 75°C produces an unsaturated sol'n. How many more grams of NaCl must be added to saturate the sol'n?
 - 1.find the **maximum** amount of NaCl that will dissolve at the **given temp**. 40 g

Temperature (°C)

- Ex5: Dissolving 25 g of NaCl in 100g H₂O at 75°C produces an unsaturated sol'n. How many more grams of NaCl must be added to saturate the sol'n?
 - 1. find the **maximum** amount of NaCl that will dissolve at the **given temp**. 40 g
 - 2. subtract the **given** amount from the **maximum** amount.

40 g - 25 g = 15 g needed

Ex6: If 120g of KNO₃ is dissolved in 100g H₂O at a high temp and then allowed to cool to 40°C, how many grams of KNO₃ will crystallize out of the sol'n?

- Ex6: If 120g of KNO₃ is dissolved in 100g H₂O at a high temp and then allowed to cool to 40°C, how many grams of KNO₃ will crystallize out of the sol'n?
 - 1.find the **maximum** amount of KNO₃ that will dissolve at the given **temp**. **57** g
 - 2. subtract the **maximum** amount from the **given** amount.
 - 120 g 57 g = 63 g crystallize
- Ex7: What is the minimum mass (in grams) of 90°C water needed to dissolve 70 grams of KCI?

- Ex7: What is the minimum mass (in grams) of 90°C water needed to dissolve 70 grams of KCI?
 - 1.find the **maximum** amount of KCl that will dissolve at the **given temp.** 55 g
 - 2. set up an **inequality** that shows the info you have at that temp a. on the **left**, write what you see on the graph

 $\frac{55 \text{ g KCl}}{100 \text{ g H}_2\text{O}} = \frac{70 \text{ g KCl}}{\text{X g H}_2\text{O}}$

b.on the **right**, write what you want to do.

3.cross multiply to solve for X

 $\frac{55 \text{ g KCl}}{100 \text{ g H}_2\text{O}} = \frac{70 \text{ g KCl}}{\text{X g H}_2\text{O}}$

3.cross multiply to solve for X

(55g KCI)(X) = (100g H₂O)(70g KCI)

X = (100g H₂O)(70g KCI) = 127.27g(55g KCI) H₂O

- Ex8: How much 60°C water would have to be added (to the original 100g) to dissolve all the KNO₃ from Ex6?
 - 1.find the maximum amount of KNO₃ that will dissolve at the given temp. ______103__ g
 - 2.find the amount of KNO_3 in Ex6. amount of KNO_3 in Ex6 = 120 g

) 40 50 60 70 80 90 12 Temperature (°C) **Ex8**: How much 60°C water would have to be added (to the original 100g) to dissolve all the KNO₃ from Ex6?

- 1. find the maximum amount of KNO₃ that will dissolve at the given temp. **103** g
- 2. find the amount of KNO_3 in Ex6.

 amount of KNO_3 in Ex6 = 120 g
- 3. set up an inequality that shows the info you have at that temp a. on the **left**, write what you see on the graph
 - $\frac{103 \text{ g KNO}_3}{100 \text{ g H}_2\text{O}} = \frac{120 \text{ g KNO}_3}{\text{X g H}_2\text{O}}$
 - b. on the **right**, write what you want to do.
- 4. cross multiply to solve for X

remperature (°C)

 $\frac{103 \text{ g KNO}_{3}}{100 \text{ g H}_{2}\text{O}} = \frac{120 \text{ g KNO}_{3}}{\text{X g H}_{2}\text{O}}$

cross multiply to solve for X (103g KNO₃)(X) = (100g H₂O)(120g KNO₃)

 $X = (100g H_2O)(120g KNO_3) = 116.5g$ (103g KNO₃) H_2O

5.subtract the original 100 g of H₂O from the amount calculated.

 $116.5 \text{ g H}_2\text{O} - 100 \text{ g H}_2\text{O} =$

16.5 g H₂O

) 40 50 60 70 80 90 1 Temperature (°C)

Part III: Solution Concentration

- the concentration of a solution can be expressed as a percentage in a similar way to how we calculated percent composition before.
- **Ex9**: What is the concentration of a sugar solution consisting of 23 g of sugar dissolved in 134 g of water?
 - 1.add the weights of the sugar and the water together.
 This is the total weight
 - 2.then divide the sugar's weight the total weight.

23 g sugar + 134 g water = 157 g total

23 g sugar = 14.65% sugar 157 g total

by

100

- Preview the funsheet (7.2)
 - Rewind and review any parts that were not clear
 - Bring both notesheet and funsheet packets to class

