

Part l: Reading the Graph

- remember, the solubility curve/ graph has three variables on it:
- on the x axis = temperature
- on the y axis = grams of solute that can be dissolved
- also on the y axis = grams of solvent (in this case, 100 g water) that the solute is dissolving in
- the grams of solvent is always held constant on the graph (you can't manipulate 3 variables at once)

- to read the graph:
- look for the given info first,
- read up or over until you hit the line (for your compound),
- go to the other axis for the information you are looking for. Ex1: How many grams of KNO_{3} will dissolve in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$? $79 \quad \mathrm{~g}$
Ex2: How many grams of KCl will dissolve in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $82^{\circ} \mathrm{C}$?

Ex1: How many grams of KNO_{3} will dissolve in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$?

\square - 79

Ex2: How many grams of KCl will dissolve in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $82^{\circ} \mathrm{C}$?

$$
52 \mathrm{~g}
$$

Ex3: At what temp will 95 g of KNO_{3} dissolve in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?

$$
57^{\circ} \mathrm{C}
$$

Ex4: At what temp will 38 g of KCl dissolve in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?

$$
35 \quad{ }^{\circ} \mathrm{C}
$$

Part II: Calculating from the Graph

 - sometimes a question can be asked that cannot be answered solely from reading the graph. But information can be obtained from the graph to help answer the question.- Ex5: Dissolving 25 g of NaCl in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $75^{\circ} \mathrm{C}$ produces an unsaturated sol'n. How many more grams of NaCl must be added to saturate the sol'n?

1. find the maximum amount of NaCl that will dissolve at the given temp.

- Ex5: Dissolving 25 g of NaClin $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $75^{\circ} \mathrm{C}$ produces an unsaturated sol'n. How many more grams of NaCl must be added to saturate the sol'n?

1. find the maximum amount of NaCl that will dissolve at the given temp. 40 g
2. subtract the given amount from the maximum amount.

$$
40 \mathrm{~g}-25 \mathrm{~g}=15 \mathrm{~g} \text { needed }
$$

Ex6: If 120 g of KNO_{3} is dissolved in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at a high temp and then allowed to cool to $40^{\circ} \mathrm{C}$, how many grams of KNO_{3} will crystallize out of the sol'n?

-Ex6: If 120 g of KNO_{3} is dissolved in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at a high temp and then allowed to cool to $40^{\circ} \mathrm{C}$, how many grams of KNO_{3} will crystallize out of the sol'n?

1. find the maximum amount of KNO_{3} that will dissolve at the given temp. $\quad 57 \quad \mathrm{~g}$
2. subtract the maximum amount from the given amount.
$120 \mathrm{~g}-57 \mathrm{~g}=63 \mathrm{~g}$ crystallize
-Ex7: What is the minimum mass (in grams) of $90^{\circ} \mathrm{C}$ water needed to dissolve 70 grams of KCI?

- Ex7: What is the minimum mass (in grams) of $90^{\circ} \mathrm{C}$ water needed to dissolve 70 grams of KCl ?

1. find the maximum amount of KCI that will dissolve at the given temp. $\quad 55 \quad \mathrm{~g}$
2. set up an inequality that shows the info you have at that temp a.on the left, write what you see on the graph $55 \mathrm{~g} \mathrm{KCl}=70 \mathrm{~g} \mathrm{KCl}$ $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{Xg} \mathrm{H}_{2} \mathrm{O}$ b. on the right, write what you want to do.
3.cross multiply to solve for X

$55 \mathrm{~g} \mathrm{KCl}=70 \mathrm{~g} \mathrm{KCl}$ $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}-\mathrm{Xg}_{2} \mathrm{O}$

3.cross multiply to solve for X $(55 \mathrm{~g} \mathrm{KCl})(\mathrm{X})=\left(100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)(70 \mathrm{~g} \mathrm{KCl})$ $\left.X=\frac{(100 \mathrm{~g} \mathrm{H}}{2} \mathrm{O}\right)(70 \mathrm{~g} \mathrm{KCl})=127.27 \mathrm{~g}$

- Ex8: How much $60^{\circ} \mathrm{C}$ water would have to be added (to the original 100 g) to dissolve all the KNO_{3} from Ex6?

1. find the maximum amount of KNO_{3} that will dissolve at the given temp. 103 g
2.find the amount of KNO_{3} in Ex6. amount of KNO_{3} in $\mathrm{Ex} 6=120 \mathrm{~g}$
 $\begin{array}{lllll}50 & 60 & 70 & 80 & 90\end{array}$

Ex8: How much $60^{\circ} \mathrm{C}$ water would have to be added (to the original 100g) to dissolve all the KNO_{3} from Ex6? 1. find the maximum amount of KNO_{3} that will dissolve at the given temp. 103 g
2. find the amount of KNO_{3} in $\mathrm{Ex6}$. amount of KNO_{3} in $\mathrm{Ex} 6=120 \mathrm{~g}$
3. setup an inequality that shows the info you have at that temp
a. on the left, write what you see on the graph
$103 \mathrm{~g} \mathrm{KNO}_{3}=120 \mathrm{~g} \mathrm{KNO}_{3}$ $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{Xg} \mathrm{H}_{2} \mathrm{O}$
b. on the right, write what you want to do.
4. cross multiply to solve for X
 $\begin{array}{lllll}50 & 60 & 70 & 80 & 90\end{array}$

$103 \mathrm{~g} \mathrm{KNO}_{3}=120 \mathrm{~g} \mathrm{KNO}_{3}$ $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \mathrm{XgH}_{2} \mathrm{O}$

- cross multiply to solve for X $\left(103 \mathrm{~g} \mathrm{KNO}_{3}\right)(\mathrm{X})=$
($100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$) $\left(120 \mathrm{~g} \mathrm{KNO}_{3}\right)$
$X=\left(100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(120 \mathrm{~g} \mathrm{KNO}_{3}\right)=116.5 \mathrm{~g}$ (103 g KNO 3)

5. subtract the original 100 g of $\mathrm{H}_{2} \mathrm{O}$ from the amount calculated. $116.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}-100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=$ $16.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Part III: Solution Concentration

- the concentration of a solution can be expressed as a percentage in a similar way to how we calculated percent composition before.
- Ex9: What is the concentration of a sugar solution consisting of 23 g of sugar dissolved in 134 g of water?
1.add the weights of the sugar and the water together. This is the total weight
2.then divide the sugar's weight the total weight.

23 g sugar +134 g water $=157 \mathrm{~g}$ total
23 g sugar $=14.65 \%$ sugar
by
157 g total

-Make sure notesheet is completely filled in
-Preview the funsheet (7.2)
-Rewind and review any parts that were not clear
-Bring both notesheet and funsheet
packets to class

10

| | | $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

